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LLMs From Scratch OVERVIEW

Overview

The current document studies fundamental topics related to generative artificial intelligence (AI) and large
language models (LLMs) [1], such as model architectures and optimizations, fine-tuning, and agentic systems,
and the corresponding codes are implemented in Python and PyTorch. For implementation purposes, we
also use defined tokenizers, models, and agents in HuggingFace [2] and LangChain [3]. It is worth noting

that the cliparts used in this document were downloaded from Pinterest [4].
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LLMS ARCHITECTURE LLMs From Scratch

LLMs Architecture

Transformers form the foundation of large language model (LLM) architectures. The original LLM archi-
tecture consists of two main components, named as an encoder and a decoder (see Fig. 2.1) [1]. Models that
follow this design are referred to as encoder-decoder models. In these models, the encoder embeds the input,
and the resulting representation is passed to the decoder for further processing. Building on the capabilities
of these two components, two additional LLM architectures were later introduced, namely encoder-only and
decoder-only models. The following two sections review these architectures in detail. It is worth mentioning
that the encoder-decoder architecture is beyond the scope of the current document.

Figure 2.1: Architecture of an LLM including an encoder and a decoder [1].
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ENCODER-ONLY MODELS

Encoder-only Models

The encoder-only models in LLMs owns the LLM
architecture with only the encoder transformer (see
Fig. 3.1). The encoder in the LLM architecture is re-
sponsible for receiving the input data (prompts) and
embedding (encoding) them into meaningful output
(vector representation). Encoder-only models ex-
ploit bidirectional processing of data whereby the
input tokens are processed using information from
both left and right to understand the token’s con-
text.

Bidirectional encoder representations from trans-
formers (BERT) [5] and robustly optimized BERT
pretraining approach (RoBERTa) [6] models are ex-
amples of encoder-only models that are applicable
for text classification, sentiment analysis, named en-
tity recognition (NER), and etc.

As seen in Fig. 3.1, the inputs in the encoder-only
model are passed through sequential components,
i.e., input embedding, positional encoding, and en-
coder layer (shown as Nx in the figure). In the rest
of the current chapter, we review each layer and the
corresponding mechanisms.

Figure 3.1: Encoder-only mode architecture [1].

3.1 Input Embedding
In encoder-only models, the inputs are textual data, represented as sequences of text units such as words,
subwords, or characters. However, the encoder block processes numerical representations rather than raw
text. To bridge this gap, an input embedding layer converts textual inputs into numerical IDs. This process
relies on a predefined vocabulary in which each text unit, commonly referred to as a token, is mapped to a
unique identifier, namely token ID. Notably, each token ID is a vector of numbers with a shape of pr-defined
embedding dimension. Consequently, the input text undergoes tokenization, where it is divided into tokens,
and then each token is mapped to the corresponding token ID.

For instance, in a Python programming, we define the input as
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POSITIONAL ENCODING ENCODER-ONLY MODELS

In the next step, we need to define the tokens unit. Considering the word unit as the tokens, we have

Finally, the tokens are converted into token IDs. To achieve this, the vocabulary (stoi in the code) is defined,
and the encode function is applied to the input text.

3.2 Positional Encoding
Positional encoding is a mechanism whereby the information about the position of a token is injected to the
input data. Hence, the model can learn the meaning and importance of the corresponding token w.r.t. its
position in the input (subject, object, verb, adjective, etc.). The traditional positional encoding is calculated
using Eq. 3.1, where pos, i, and dmodel are position, the index for the dimension, and the embedding
dimension [1].

PE(pos,i) = sin
(

pos/100002i/dmodel
)

PE(pos,2i+1) = cos
(

pos/100002i/dmodel
) (3.1)

It is worth noting that positional encoding can also be learned during the training of the encoder. For
example, in the following code snippet, the positional encoding is implemented as a dedicated layer within
the model. During the forward pass, the positional information is integrated into the input representations
by adding it to the token embeddings.
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ENCODER-ONLY MODELS ENCODER LAYER

3.3 Encoder Layer
The encoder layer (shown Nx in Fig. 3.1) comprises two sub-layers. The first sub-layer implements the multi-
head self-attention mechanism, and the second sub-layer is a fully-connected feed-forward neural network.
Each sub-layer has a residual connection around itself, and also is succeeded by a normalization layer [1].

3.3.1 Multi-Head Self-Attention Mechanism
The self-attention mechanism is a core component of transformers, enabling the model to learn and capture
the relationships between tokens within a sequence. This mechanism is implemented within the attention
heads of the transformer architecture [1].

To model the relationships between tokens, the in-
put is first projected into three distinct representa-
tions: the query (Q), key (K), and value (V) vec-
tors. Figure 3.2 illustrates the architecture of an
attention head within the model. When an embed-
ded and positionally encoded input passes through
the attention head, it undergoes the following five
processing steps [1]:

• Step 1: query (Q), key (K), and value (V)
components are passed through linear layers in
the attention head model so that these compo-
nents are learned.

• Step 2: the alignment scores are calculated
through multiplication of matrices query and
key.

• Step 3: the alignment scores are scaled by
1/dk, where dk is the dimension of the query
(or the key) matrix.

• Step 4: softmax operation is applied to the
scaled scores to obtain the attention weights.

• Step 5: the attention weights are multiplied
with the value matrix.

Figure 3.2: Architecture of an attention head [1].
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ENCODER LAYER ENCODER-ONLY MODELS

The multi-head self-attention mechanism consists of multiple parallel attention heads, each learning
distinct representation subspaces. The outputs from all attention heads are concatenated and then projected
through a linear layer to produce the final combined representation [1].

3.3.2 Add & Norm
Residual Connections (Add): Preserving infor-
mation from earlier layers helps mitigate the vanish-
ing gradient problem. In transformer encoders, this
is achieved through residual connections, where the
original input of a layer is added to its output. This
mechanism enables the network to retain essential
information across layers and facilitates more effec-
tive gradient flow during training [1].

Layer Normalization (Norm): During training,
the model may experience internal covariate shift,
where the distribution of activations changes across
layers, potentially leading to vanishing or exploding
gradients. To address this challenge, layer normal-
ization is applied to the outputs of deeper layers
that in result, stabilizes training by reducing distri-
butional shifts and ensures more consistent gradient
flow [1].

3.3.3 Feed-Forward Network
The feed-forward sub-layer introduces non-
linearities into the encoder, thereby enhancing
the model’s capacity to capture complex patterns
and non-linear relationships within sequential
data. The feed-forward network consists of two
linear transformations separated by an activation
function, typically the rectified linear unit (ReLU)
or the Gaussian error linear unit (GELU) [1].

The ReLU activation applies max(0, x) to each in-
put x, effectively setting all negative values to zero.
Although computationally efficient, ReLU suffers
from the dying ReLU problem, where neurons can
become permanently inactive during training and
consistently output zero due to negative weighted
inputs. In contrast, GELU is a smoother activation
function that maps a value to x × Φ(x), where Φ(x)
denotes the cumulative distribution function (CDF)
of the standard normal distribution. This smooth
approximation allows GELU to retain small negative
values and has been shown to improve performance
in transformer-based architectures [1].
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ENCODER-ONLY MODELS IMPLEMENTATION

3.4 Implementation
In this section, we use a small input text to develop a minimal encoder-only model, called TinyBert. The
goal is to gain familiarity with the operation of encoder-only models. The overall network architecture is
shown below, and the complete implementation script is available on GitHub.

As defined in the __init__ function, the model network includes the following layers:

• self.token_embed: it creates an embedding layer that converts token indices (integers) into dense vector
representations (embeddings).

• self.pos_embed: this layer create the positional encoding of the input tokens.

• self.blocks: it includes encoder blocks (layers), each with a multi-head self-attention head, a feed-
forward network, and the corresponding add & norm components.

• self.ln_f: this layer defines the final layer normalization applied to the transformer’s output before
passing it into the language modeling head.

• self.mlm_head: it defines the masked language model (MLM) head, i.e., the final layer that maps the
hidden representations produced by the transformer into predicted token probabilities.

When an input passes through the forward function, it is first converted into token embeddings. Positional
embeddings are then added to incorporate information about token order. The resulting representations are
sequentially passed through all the transformer blocks defined in the model. The output of the final block is
normalized using the last layer normalization and then fed into the language modeling head. At this stage,
each token is represented by a hidden vector of size equal to the embedding dimension, and the final layer
predicts the probability distribution over the vocabulary for the next token.
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IMPLEMENTATION ENCODER-ONLY MODELS

During training, the model compares these predicted logits with the true token IDs using cross-entropy
loss, and updates its weights through backpropagation to minimize this loss.

Since the primary objective of the designed TinyBert model is to predict masked tokens in the input
text, the get_batch function used during training incorporates a mask_token function based on the MLM
strategy. This function applies an 80/10/10 masking rule: 80% of tokens are replaced with a predefined mask
token (e.g., “[MASK]”), 10% are substituted with random tokens from the vocabulary, and the remaining
10% are left unchanged.

3.4.1 Evaluation
For evaluation, we select a portion of the text, mask certain words, and assess the model’s performance in
predicting these masked tokens. Accordingly, we compute the cross-entropy loss, perplexity, and accuracy on
the masked words: (1) cross-entropy loss measures the difference between the predicted probability distribu-
tion of a model and the true distribution of the target data; lower values indicates better predictions and less
uncertainty. (2) perplexity measures the model’s uncertainty; lower perplexity implies that the model assigns
higher probability to the actual next word in the sequence, resulting a more confident and accurate model.
(3) accuracy measures how well the model predicts the masked tokens, with higher values indicating more
correct predictions. Table 3.1 indicates the performance of TinyBert w.r.t. the aforementioned evaluation
metrics.

Table 3.1: Performance evaluation of tinyBERT.

Cross-Entropy Loss Perplexity Accuracy (%)
0.2245 1.25 100
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DECODER-ONLY MODELS

Decoder-only Models

Decoder-only models in LLMs consist solely of the
transformer decoder component of the overall archi-
tecture (see Fig. 4.1). The decoder receives input
data (prompts) and generates coherent and context-
aware output. Unlike encoder-only models, which
leverage bidirectional context, decoder-only mod-
els are autoregressive whereby they predict the
next token based on the previously generated tokens.
Therefore, these models are particularly well-suited
for text generation tasks.

Generative pre-trained transformer (GPT) fam-
ily (e.g., GPT-2, GPT-3, and ChatGPT) [7], path-
ways language model (PaLM) [8], and large language
model Meta AI (LlaMA) [9] models are examples of
decoder-only models, commonly used for text gen-
eration tasks such as creative writing and conversa-
tional agents.

As shown in Fig. 4.1, similar to encoder-only mod-
els, the inputs in a decoder-only model are processed
through a series of sequential components, including
input embedding, positional encoding, and decoder
blocks/layers (denoted as Nx in the figure). In the
remainder of this chapter, we review each layer and
its underlying mechanisms in detail. Figure 4.1: Decoder-only mode architecture [1].

4.1 Input Embedding
In decoder-only models, the inputs are textual data, represented as sequences of text units such as words,
subwords, or characters. However, the decoder block processes numerical representations rather than raw
text. To bridge this gap, an input embedding layer converts textual inputs into numerical IDs. This process
relies on a predefined vocabulary in which each text unit, commonly referred to as a token, is mapped to a
unique identifier, namely token ID. Notably, each token ID is a vector of numbers with a shape of pr-defined
embedding dimension. Consequently, the input text undergoes tokenization, where it is divided into tokens,
and then each token is mapped to the corresponding token ID.
For instance, in a Python programming, we define the input as
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INPUT EMBEDDING DECODER-ONLY MODELS

In the next step, we need to define the tokens unit. Considering the character unit as the tokens, we have

Finally, the tokens are converted into token IDs. To achieve this, the vocabulary (stoi in the code) is defined,
and the encode function is applied to the input text.

Moreover, a decode function is defined to convert tokens IDs to tokens. To this end, we defined the corre-
sponding dictionary (itos in the code), and the decode function is applied to the encoded text.

Page 10 Forough Shirin Abkenar



DECODER-ONLY MODELS POSITIONAL ENCODING

4.2 Positional Encoding

Positional encoding is a mechanism whereby the information about the position of a token is injected to the
input data. Hence, the model can learn the meaning and importance of the corresponding token w.r.t. its
position in the input (subject, object, verb, adjective, etc.). The traditional positional encoding is calculated
using Eq. 4.1, where pos, i, and dmodel are position, the index for the dimension, and the embedding
dimension [1].

PE(pos,i) = sin
(

pos/100002i/dmodel
)

PE(pos,2i+1) = cos
(

pos/100002i/dmodel
) (4.1)

It is worth noting that positional encoding can also be learned during the training of the encoder. For
example, in the following code snippet, the positional encoding is implemented as a dedicated layer within
the model. During the forward pass, the positional information is integrated into the input representations
by adding it to the token embeddings.

4.3 Decoder Layer

The decoder layer (shown as Nx in Fig. 4.1) consists of three sub-layers: (1) a multi-head self-attention
mechanism applied to the decoder’s inputs, (2) a multi-head cross-attention mechanism over the encoder’s
outputs, and (3) a fully connected feed-forward network. Each sub-layer includes a residual connection and
is followed by a normalization layer [1].

4.3.1 Multi-Head Self-Attention Mechanism

The self-attention mechanism is a core component of transformers, enabling the model to learn and capture
the relationships between tokens within a sequence. This mechanism is implemented within the attention
heads of the transformer architecture [1].
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DECODER LAYER DECODER-ONLY MODELS

To model the relationships between tokens, the in-
put is first projected into three distinct representa-
tions: the query (Q), key (K), and value (V) vec-
tors. Figure 4.2 illustrates the architecture of an
attention head within the model. When an embed-
ded and positionally encoded input passes through
the attention head, it undergoes the following six
processing steps [1]:

• Step 1: query (Q), key (K), and value (V)
components are passed through linear layers in
the attention head model so that these compo-
nents are learned.

• Step 2: the alignment scores are calculated
through multiplication of matrices query and
key.

• Step 3: the alignment scores are scaled by
1/dk, where dk is the dimension of the query
(or the key) matrix.

• Step 4: a causal masking function is applied
to prevent the model from attending to future
tokens.

• Step 5: softmax operation is applied to the
scaled scores to obtain the attention weights.

• Step 6: the attention weights are multiplied
with the value matrix.

Figure 4.2: Architecture of an attention head [1].

The multi-head self-attention mechanism consists of multiple parallel attention heads, each learning
distinct representation subspaces. The outputs from all attention heads are concatenated and then projected
through a linear layer to produce the final combined representation [1].

4.3.2 Add & Norm
Residual Connections (Add): Preserving infor-
mation from earlier layers helps mitigate the vanish-
ing gradient problem. In transformer encoders, this
is achieved through residual connections, where the
original input of a layer is added to its output. This
mechanism enables the network to retain essential
information across layers and facilitates more effec-
tive gradient flow during training [1].

Layer Normalization (Norm): During training,
the model may experience internal covariate shift,
where the distribution of activations changes across
layers, potentially leading to vanishing or exploding
gradients. To address this challenge, layer normal-
ization is applied to the outputs of deeper layers
that in result, stabilizes training by reducing distri-
butional shifts and ensures more consistent gradient
flow [1].

Page 12 Forough Shirin Abkenar



DECODER-ONLY MODELS IMPLEMENTATION

4.3.3 Feed-Forward Network
The feed-forward sub-layer introduces non-
linearities into the encoder, thereby enhancing
the model’s capacity to capture complex patterns
and non-linear relationships within sequential data.
The feed-forward network consists of two linear
transformations separated by an activation func-
tion, typically the Rectified Linear Unit (ReLU) or
the Gaussian Error Linear Unit (GELU) [1].

The ReLU activation applies max(0, x) to each in-
put x, effectively setting all negative values to zero.
Although computationally efficient, ReLU suffers
from the dying ReLU problem, where neurons can
become permanently inactive during training and
consistently output zero due to negative weighted
inputs. In contrast, GELU is a smoother activation
function that maps a value to x × Φ(x), where Φ(x)
denotes the cumulative distribution function (CDF)
of the standard normal distribution. This smooth
approximation allows GELU to retain small negative
values and has been shown to improve performance
in transformer-based architectures [1].

4.4 Implementation
In this section, we use a small input text to develop a minimal decoder-only model, called TinyGPT. The
goal is to gain familiarity with the operation of decoder-only models. The overall network architecture is
shown below, and the complete implementation script is available on GitHub.

As defined in the __init__ function, the model network includes the following layers:

• self.token_embed: it creates an embedding layer that converts token indices (integers) into dense vector
representations (embeddings).

• self.pos_embed: this layer create the positional encoding of the input tokens.

Forough Shirin Abkenar Page 13
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IMPLEMENTATION DECODER-ONLY MODELS

• self.blocks: it includes encoder blocks (layers), each with a multi-head self-attention head, a feed-
forward network, and the corresponding add & norm components.

• self.ln_f: this layer defines the final layer normalization applied to the transformer’s output before
passing it into the language modeling head.

• self.lm_head: it defines the language modeling head, i.e., the final layer that maps the hidden repre-
sentations produced by the transformer into predicted token probabilities.

When an input passes through the forward function, it is first converted into token embeddings. Positional
embeddings are then added to encode the order of tokens. The resulting representations are sequentially
passed through all transformer blocks in the model. Within the attention head, the self.register_buffer
mechanism implements a lower-triangular mask to prevent the model from attending to future tokens during
processing.

The output of the final block is normalized using the last layer normalization and then fed into the
language modeling head. At this stage, each token is represented by a hidden vector of size equal to the
embedding dimension, and the final layer predicts the probability distribution over the vocabulary for the
next token.
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DECODER-ONLY MODELS IMPLEMENTATION

During training, the model compares these predicted logits with the true token IDs using cross-entropy
loss, and updates its weights through backpropagation to minimize this loss.

4.4.1 Evaluation
For evaluation, we provide the model with a starting prompt and ask it to generate the remaining text.
Considering the small size of the training data, the generated outputs are reasonably accurate.

Also, we compute the cross-entropy loss, perplexity, accuracy, bit per char (BPC), and distinct scores.

• Cross-entropy loss: this metric measures the difference between the predicted probability distri-
bution of a model and the true distribution of the target data. It quantifies how well the model’s
predicted probabilities match the actual outcomes, with lower values indicating better predictions and
less uncertainty.

• Perplexity: it measures the model’s uncertainty; lower perplexity implies that the model assigns
higher probability to the actual next word in the sequence, resulting a more confident and accurate
model.

• Accuracy: this metric is defined in terms of correct predictions over ground-truth data. However,
since the tokens are in terms of characters, accuracy is not a reliable metric in the current evaluations.

• Bit per char: BPC measures the average number of bits a model needs to encode or predict each
character in the text. Lower BPC indicates better predictive performance and less uncertainty, and it
is equivalent to cross-entropy expressed in bits rather than nats.
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IMPLEMENTATION DECODER-ONLY MODELS

• Distinct scores: these scores quantify diversity in generated text. To compute them, all n-grams of
length n in the text are first extracted. The metric then calculates the proportion of unique n-grams
relative to the total number of n-grams. A higher score indicates greater diversity, meaning the text is
less repetitive.

Table 4.1 indicates the performance of TinyGPT w.r.t. the aforementioned evaluation metrics.

Table 4.1: Performance evaluation of TinyGPT.

Cross-Entropy Loss Perplexity Accuracy (%) BPC (bits) Distinct-1 Distinct-2
0.0399 1.04 98.48 0.058 0.113 0.432
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LLM FINE-TUNING

LLM Fine-tuning

Foundation large language models (LLMs) are trained on vast corpora of data. While they achieve strong
overall performance, they often struggle with tasks where the data distribution differs significantly from their
training set. Fine-tuning is a crucial technique to address this limitation [10].

Fine-tuning is the process of taking updating the parameters of a pre-trained model by training the model
on a dataset specific to the task. Figure 5.1 shows the overall workflow of fine-tuning an LLM.

Figure 5.1: Overall workflow of fine-tuning.

5.1 Implementation
In this section, we fine-tune the GPT-2 model. The complete implementation script is available on GitHub.

The fundamental components in fine-tuning a model using Hugging Face application programming in-
terface (API) [2] are tokenizer, foundation model, training arguments, (hyperparameters), and data collator,
and trainer API.

Tokenizer is responsible for tokenizing the inputs into tokens and encoding them to the corresponding
token IDs. Each foundation model has its own tokenizer, developed based on the pre-defined vocabulary
(or dictionary) for the model. For loading both tokenizer and model, we define a checkpoint w.r.t. the
foundation model we are going to exploit for fine-tuning. Here, we have model_name = "gpt2".

Truncation and padding are essential configurations that must be specified for the tokenizer. To achieve
this, a dedicated function (e.g., tokenization_fn) is typically defined to set these parameters accordingly.
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Within this function, the max_length parameter plays a key role, as it determines the sequence length used
for both truncation and padding.

Next, we need to load the model from the pre-defined checkpoint.

For fine-tuning the loaded model, training arguments must be properly defined. In this regard, we have

• output_dir: the directory where checkpoints are saved.

• eval_strategy: the evaluation strategy.

• per_device_train_batch_size: keeps virtual random access memory (VRAM) usage low.

• gradient_accumulation_steps: simulates larger effective batch size without increasing VRAM.

• num_train_epochs: number of passes over the dataset for fine-tuning.

• learning_rate: learning rate.

• logging_steps: number of steps for logging loss.

• save_steps: number of steps to save checkpoints.

The data collator handles padding and batching. It takes a list of individual data samples and organizes
them into a single and consistent batch using padding, creating attention masks, and handling special tokens.

Finally, we define the trainer and perform the fine-tuning. We also record the training time.
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Evaluation

To evaluate the performance of the fine-tuned model, we exploit perplexity, bilingual evaluation understudy
(BLEU) [11], and recall-oriented understudy for gisting evaluation (ROUGE) [12].

• Perplexity: it measures the model’s uncertainty; lower perplexity implies that the model assigns
higher probability to the actual next word in the sequence, resulting a more confident and accurate
model.

• BLEU: this metric evaluates the quality of machine-translated text by comparing it to human-created
reference translations. To this end, it computes the overlap of n-grams between the machine-translated
text and the reference translation.

• ROUGE: it calculates precision, recall, and F1 score to quantify the overlap (n-grams) in words,
phrases, and sequences between the machine-translated text and the reference translation.

Table 5.1 indicates the corresponding results. It is worth noting that achieving a highly efficient model
requires fine-tuning on an appropriately selected dataset with a sufficient number of samples. However, the
objective of this chapter is limited to reviewing the fine-tuning mechanisms in LLMs. Consequently, the
resulting model performance may not be fully optimized.

Table 5.1: Performance evaluation of the fine-tuned model.

PPL BLEU ROUGE Time (s)bleu unigrams bigrams trigrams quadgrams rouge1 rouge2 rougeL rougeLSum
50.1325 0.7069 0.7103 0.7079 0.7056 0.7036 0.6751 0.6361 0.6742 0.6742 92.3040
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Parameter-efficient Fine-tuning

Pre-trained large-language models (LLMs) own a large set of parameters. Although these models achieve
strong overall performance, they often struggle with tasks in which the data distribution differs significantly
from their training set. Fine-tuning, i.e., the process of updating the parameters of a pre-trained model by
training the model on a dataset specific to the task (see Chapter 5), is a crucial technique to address this
limitation [10].

Although fine-tuning adapts the model more effectively to specific tasks, pre-trained models often contain
a large number of parameters, which reduces the efficiency of fine-tuning, particularly in terms of inference
speed. To address this challenge, parameter-efficient fine-tuning (PEFT) [13] is employed. PEFT preserves
the overall model architecture while updating only a small subset of parameters, thereby reducing compu-
tational overhead and improving both training efficiency and inference performance.

To this end, PEFT freezes the majority of the pre-trained parameters and layers, introducing only a
small number of trainable parameters, known as adapters, into the final layers of the model for the task at
hand. This approach allows fine-tuned models to retain the knowledge acquired during pre-training while
efficiently specializing in their respective downstream tasks [13].

6.1 Low-rank Adaptation

Low-rank adaptation (LoRA) is an efficient PEFT technique that leverages low-rank decomposition to
reduce the number of trainable parameters. Figure 6.1 shows the overall workflow of LoRA wherein LoRA
freezes the high-dimensional pre-trained weight matrix and decomposes that into two lower-rank matrices, A
and B. As a result, rather than the high-dimensional pre-trained weight matrix, the two low-rank matrices
are updated during fine-tuning to capture task-specific adaptations. After training, these matrices are merged
with the original weights to form an updated parameter matrix. This results in efficient training without
modifying most of the pre-trained parameters [14].

Figure 6.1: Overall workflow of LoRA [14].
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6.2 Implementation
In this section, we fine-tune the GPT-2 model and apply LoRA on that. The complete implementation
script is available on GitHub.

The fundamental components in fine-tuning a model using Hugging Face application programming in-
terface (API) [2] are tokenizer, foundation model, training arguments, (hyperparameters), data collator, and
trainer API. We also need to import PEFT-related libraries into the program.

Tokenizer is responsible for tokenizing the inputs into tokens and encoding them to the corresponding
token IDs. Each foundation model has its own tokenizer, developed based on the pre-defined vocabulary
(or dictionary) for the model. For loading both tokenizer and model, we define a checkpoint w.r.t. the
foundation model we are going to exploit for fine-tuning. Here, we have model_name = "gpt2".

Truncation and padding are essential configurations that must be specified for the tokenizer. To achieve
this, a dedicated function (e.g., tokenization_fn) is typically defined to set these parameters accordingly.
Within this function, the max_length parameter plays a key role, as it determines the sequence length used
for both truncation and padding.

Next, we need to load the model from the pre-defined checkpoint. After loading the model, we define the
LoRA configuration and modify the model accordingly.

For fine-tuning the loaded model, training arguments must be properly defined. In this regard, we have

• output_dir: the directory where checkpoints are saved.

• per_device_train_batch_size: keeps virtual random access memory (VRAM) usage low.

• gradient_accumulation_steps: simulates larger effective batch size without increasing VRAM.
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• num_train_epochs: number of passes over the dataset for fine-tuning.

• learning_rate: learning rate.

• logging_steps: number of steps for logging loss.

• save_steps: number of steps to save checkpoints.

The data collator handles padding and batching. It takes a list of individual data samples and organizes
them into a single and consistent batch using padding, creating attention masks, and handling special tokens.

Finally, we define the trainer and perform the fine-tuning.

Evaluation

To evaluate the performance of the fine-tuned model, we exploit perplexity, bilingual evaluation understudy
(BLEU) [11], and recall-oriented understudy for gisting evaluation (ROUGE) [12].

• Perplexity: it measures the model’s uncertainty; lower perplexity implies that the model assigns
higher probability to the actual next word in the sequence, resulting a more confident and accurate
model.

• BLEU: this metric evaluates the quality of machine-translated text by comparing it to human-created
reference translations. To this end, it computes the overlap of n-grams between the machine-translated
text and the reference translation.

• ROUGE: it calculates precision, recall, and F1 score to quantify the overlap (n-grams) in words,
phrases, and sequences between the machine-translated text and the reference translation.

Table 6.1 indicates the corresponding results. It is worth noting that achieving a highly efficient model
requires fine-tuning on an appropriately selected dataset with a sufficient number of samples. However, the
objective of this chapter is limited to reviewing the fine-tuning mechanisms in LLMs. Consequently, the
resulting model performance may not be fully optimized.

Table 6.1: Performance evaluation of the fine-tuned LoRA model.

PPL BLEU ROUGE Time (s)bleu unigrams bigrams trigrams quadgrams rouge1 rouge2 rougeL rougeLSum
65.4614 0.6626 0.6663 0.6638 0.6612 0.6591 0.7467 0.6738 0.7466 0.7473 83.3375
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Direct Preference Optimization

Language models (LMs) capable of learning a broad spectrum of knowledge are typically trained unsuper-
vised. However, the unsupervised nature of their training data makes precise control over their behavior
challenging. Reinforcement Learning from Human Feedback (RLHF) has emerged as a promising approach
to address this limitation. However, RLHF is complex because it requires first training a reward model
to capture human preferences and then fine-tuning the unsupervised LM using reinforcement learning to
maximize the estimated reward (see Fig. 7.1) [15].

Figure 7.1: Overall workflow of RLHF [16].

In contrast, Direct Preference Optimization (DPO) simplifies this process by bypassing the need for a
separate reward model. Instead, it directly optimizes the LM using a loss function that encourages the
generation of preferred responses over displeased ones, based on a dataset of human preferences. Figure 7.2
illustrates the overall DPO workflow [16].

Figure 7.2: Overall workflow of DPO [16].

7.1 Implementation
In this section, we fine-tune the GPT-2 model using DPO. The complete implementation script is available
on GitHub.

The fundamental components in fine-tuning a model using Hugging Face application programming in-
terface (API) [2] are tokenizer, foundation model, training arguments, (hyperparameters), and trainer API
with the latter two configured based on the DPO framework.
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Tokenizer is responsible for tokenizing the inputs into tokens and encoding them to the corresponding
token IDs. Each foundation model has its own tokenizer, developed based on the pre-defined vocabulary
(or dictionary) for the model. For loading both tokenizer and model, we define a checkpoint w.r.t. the
foundation model we are going to exploit for fine-tuning. Here, we have model_name = "gpt2".

Truncation and padding are essential configurations that must be specified for the tokenizer. To achieve
this, a dedicated function (e.g., tokenization_fn) is typically defined to set these parameters accordingly.
Within this function, the max_length parameter plays a key role, as it determines the sequence length used
for both truncation and padding.

Next, we need to load the model from the pre-defined checkpoint.

After loading the model, we define the DPO configuration that includes training arguments as

• output_dir: the directory where checkpoints are saved.

• per_device_train_batch_size: keeps virtual random access memory (VRAM) usage low.

• gradient_accumulation_steps: simulates larger effective batch size without increasing VRAM.

• num_train_epochs: number of passes over the dataset for fine-tuning.

• learning_rate: learning rate.

• beta: preference sharpness; higher value, stronger preference.

Finally, we define the trainer and perform the fine-tuning.
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Evaluation

To evaluate the performance of the fine-tuned model, we exploit preference accuracy, i.e., the accuracy of
predicting the preferred responses by humans. Table 7.1 indicates the corresponding results. It is worth
noting that achieving a highly efficient model requires fine-tuning on an appropriately selected dataset with
a sufficient number of samples. However, the objective of this chapter is limited to reviewing the fine-tuning
mechanisms in LLMs. Consequently, the performance of the resulting model may not be fully optimized.

Table 7.1: Performance evaluation of the fine-tuned model using DPO.

Preference Accuracy (%) Time (s)
45.80 826.8992
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Agentic AI

Traditional artificial intelligence (AI) systems rely heavily on predefined rules and human intervention. They
typically react to inputs or execute preset instructions. In contrast, agentic AI systems operate with a high
degree of autonomy, performing tasks with minimal supervision. Unlike traditional reactive systems, agentic
AI is proactive, leveraging machine learning (ML) models to mimic human-like decision making in real time
[17].

LangGraph is a low-level framework developed by the creators of LangChain, designed to facilitate the
implementation of agentic AI through graph-based workflow orchestration. While LangChain provides high-
level abstractions for building LLM-powered applications, LangGraph focuses on the construction of stateful
and agentic workflows using a graph-based execution model [3, 18]. In the remainder of this chapter, we
review these frameworks and illustrate their usage with corresponding code examples.

8.1 LangGraph

LangGraph is an open-source framework designed for developing and managing complex generative AI agent
workflows. Building, executing, and maintaining large language model (LLM)-driven applications can be
inherently challenging. To address this, LangGraph provides a comprehensive set of tools and libraries that
enable users to efficiently develop, orchestrate, and optimize these applications in a scalable manner. At
its core, LangGraph adopts a graph-based architecture, where each application is represented as a graph in
which nodes correspond to tasks or states and edges represent transitions between them [19].

In the rest of this section, we first explore the graph-based architecture of LangGraph through code
examples adapted from [20]. Thereafter, we develop several simple agentic AI systems using LangGraph,
following designs also provided by [20].

8.1.1 Basics

In this section, we implement a series of LangGraph-based projects to develop a deeper understanding of
its fundamental concepts. A graph in LangGraph consists of three primary components: a start state, one
or more nodes, and an end state. These components are interconnected through edges, which define the
transitions between them. A node within the graph can be designed to accept either a single input (e.g.,
a single value) or multiple inputs (e.g., a list of values). We begin by constructing a simple graph with
a single node that processes a single input, then extend it to handle multiple inputs. Subsequently, we
increase the number of nodes to create more complex workflows. All these initial experiments are conducted
under deterministic transitions. Next, we explore conditional transitions, where edges are traversed based on
specific criteria. Finally, we conclude the section by examining cyclic graphs (loops), which enable iterative
workflows.
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Single Node Graph

Figure 8.1 illustrates the overall flow of a single-node
graph in LangGraph, consisting of a start state, a
node (named greeter), and an end state. The start
state is connected to the node via a directed edge
(transition), and similarly, the node is connected to
the end state through another directed edge.

In this example, the primary objective is to re-
ceive the user’s first name as input and display the
message: “Hey user’s first name, how is your day go-
ing?" In this regard, we first need to create a shared
data structure to keep track of information as the
application runs. The defined structure, AgentState,
records the system’s state.

Figure 8.1: Flow of the single node graph in
LangGraph [20].

Then, the greeter node is defined as a function that receives the user’s first name as input and incorporates
it into the state information stored in AgentState. The function then returns the updated state.

The next step involves constructing the graph. To begin, we initialize an empty graph in LangGraph,
specifying its input type as state (AgentState). We then add the greeter node to the graph, followed by
connecting it to both the start and end states. Finally, we compile the graph and store it in a variable for
subsequent execution.

Lastly, we invoke the compiled graph by passing an example first name to that. The results indicate that
the designed graph-based system could successfully meet the intended objective. The complete implemen-
tation script is available on GitHub.

We repeat the same steps for the multi-input scenario, in which a list of values is provided to the system
alongside the user’s first name. The system then returns a message that incorporates both the user’s first
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name and the sum of the values. Compared to the single-input scenario, the AgentState in the multi-input
scenario handles two types of input data: the user’s name as a string and the values as a list of integers.

In the multi-input scenario, the node is referred to as processor. The inputs are passed to this node,
which calculates the sum of the values, constructs a message incorporating both the user’s name and the
calculated sum, and updates the state accordingly.

The system is then compiled and executed with the user-provided inputs. The results confirm that the
system successfully achieves the intended functionality. The complete implementation script is available on
GitHub.

Sequential Graph

In addition to the input dimension, the number of
nodes employed in a graph plays an important role
in the efficiency of agentic systems. Figure 8.2 il-
lustrates the overall flow of a sequential graph in
LangGraph, consisting of a start state, two nodes
(named first and second), and an end state. The
start state is connected to the first node via a di-
rected edge (transition), and similarly, the second
node is connected to the first node and to the end
state through two separate directed edges.

In this example, the primary objective is to handle
multiple nodes in a graph. The nodes are responsible
for sequentially process and update different parts
of the state. The first node receive the user’s first
name as input and add it to the state. The second
node receives the user’s age and update the state.
Finally, the system outputs: “Hi user’s first name!
You are user’s age years old!". In this regard, we
first need to create a shared data structure to keep
track of information as the application runs. The
defined structure, AgentState, records the system’s
state.

Figure 8.2: Flow of the sequential graph in Lang-
Graph [20].
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Then, the first node is defined as a function that receives the user’s first name as input and incorporates
it into the state information stored in AgentState. The function then returns the updated state.

Thereafter, the second node is defined as a function that receives the user’s age as input and incorporates
it into the state information stored in AgentState. The function then returns the updated state.

The next step involves constructing the graph. To begin, we initialize an empty graph in LangGraph,
specifying its input type as state (AgentState). We then add the first and second nodes to the graph, followed
by a proper connection. The first node is connected to the start state and the second node. The second
node is connected to the end state. Finally, we compile the graph and store it in a variable for subsequent
execution.

Lastly, we invoke the compiled graph by passing an example first name and age to that. The results
indicate that the designed graph-based system could successfully meet the intended objective. The complete
implementation script is available on GitHub..
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Conditional Graph

In addition to deterministic transitions, nodes and
states in LangGraph can also involve conditional
transitions. Figure 8.3 illustrates the overall flow of
a conditional graph in LangGraph, which consists
of a start state, three nodes (router, add_node, and
subtract_node), and an end state. The start state is
connected to the router via a directed edge (transi-
tion). The router, in turn, connects to the add_node
and subtract_node through conditional edges based
on specific criteria. Finally, both add_node and
subtract_node are connected to the end state via
directed edges.

The primary objective is to incorporate condi-
tional logic into the nodes of the graph. To achieve
this, we define a scenario in which the graph receives
an input state containing two numbers and an oper-
ation, and determines whether to compute their sum
or difference based on the specified operation. The
router node processes the input and makes the deci-
sion accordingly. Before implementing this logic, we
first define a shared data structure to maintain the
application’s state during execution. This structure,
called AgentState, is responsible for recording and
managing the system’s state.

Figure 8.3: Flow of the conditional graph in Lang-
Graph [20].

Next, all three nodes are defined. The adder and subtractor nodes correspond to add_node and sub-
tract_node, respectively. The adder node computes the sum of the two numbers, whereas the subtractor
node calculates their difference.
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Then, the router node is defined as a function that receives the two numbers and the specified operation
as inputs and determines whether to route the flow to add_node or subtract_node based on the operation
type. The function then returns the updated state.

The next step involves constructing the graph. To begin, we initialize an empty graph in LangGraph,
specifying its input type as state (AgentState). We then add all three nodes, i.e., router, add_node, and
subtract_node, to the graph. The router is connected to the start state via a deterministic edges. Accord-
ingly, two conditional edges are defined to connect the router to the add_node and subtract_node. Finally,
both add_node and subtract_node are connected to the end state through deterministic edges. Then, we
compile the graph and store it in a variable for subsequent execution.

Lastly, we invoke the compiled graph by passing two example input states to that, each including two
numbers and an operation. The results indicate that the designed graph-based system could successfully
meet the intended objective. The complete implementation script is available on GitHub.
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Looping Graph

Some graphs are designed to implement looping
logic, where data is routed back to previously vis-
ited nodes. In such graphs, a cyclic edge is defined
for specific nodes, enabling them to transition back
to themselves. Figure 8.4 illustrates the overall flow
of a looping graph in LangGraph, which consists of
a start state, two nodes (greeting and random), and
an end state. The start state is connected to the
greeting node via a directed edge (transition). The
random node, in turn, has two conditional edges:
one that carries the looping condition and routes
the flow back to the node itself, and another that
connects the random node to the end state.

In this example, the system receives the user’s
first name as input and generates random numbers
for specific rounds (e.g., five times here). Finally,
the system outputs the message “Hi there user’s
first name". In this regard, we first need to create
a shared data structure to keep track of informa-
tion as the application runs. The defined structure,
AgentState, records the system’s state.

Figure 8.4: Flow of the looping graph in LangGraph
[20].

Then, the greeting node is defined as a function that receives the user’s first name as input and incorpo-
rates it into the state information stored in AgentState. The function then returns the updated state. Also,
the random node is created to generate random numbers and save them into the state.

Moreover, a function is defined to determine whether the system has reached the end state or should
continue by entering the loop. The decision is based on a predefined maximum number of iterations required
for the process.
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The next step involves constructing the graph. To begin, we initialize an empty graph in LangGraph,
specifying its input type as state (AgentState). We then add the greeting and random nodes to the graph.
The greeting node is connected to the start state and random state using deterministic edges. The random
node, in turn, includes two conditional edges: one that carries the looping condition and routes the flow
back to itself, and another that connects the random node to the end state. Finally, we compile the graph
and store it in a variable for subsequent execution.

Lastly, we invoke the compiled graph by passing an example first name to that. The results indicate that
the designed graph-based system could successfully meet the intended objective. The complete implemen-
tation script is available on GitHub.
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8.1.2 Agentic AI
One of the primary applications of LangGraph is the development of agentic AI systems designed to minimize
human intervention by leveraging one or more autonomous agents. These agents integrate large language
models (LLMs) into the system and employ appropriate tools to accomplish tasks with minimal supervision.
In the remainder of this section, we present several scenarios that demonstrate the construction of such
systems. We begin with a simple chatbot that engages in basic conversations with the user. We then
extend this chatbot by integrating memory, enabling it to retain and utilize conversational context. Next,
we improve the agentic system by incorporating one or more tools, implemented as functions, to achieve
specific objectives. Finally, we develop an agentic system capable of retrieving information from designated
resources and files.

Bots

The objective here is to develop bots capable of en-
gaging in conversations with the user. Figure 8.5
illustrates the graph architecture of a bot imple-
mented as a single-node graph in LangGraph. As
shown in the figure, the graph consists of a start
state, a node called processor, and an end state.

In the first scenario, the objective is to develop a
simple chatbot that engages in conversations with
the user without utilizing memory to retain previ-
ous interactions. To achieve this, the processor node
leverages an LLM to generate responses. As the ini-
tial step, we define a shared data structure, called
AgentState, to manage and maintain the applica-
tion’s state during execution.

Figure 8.5: Graph architecture of a bot in Lang-
Graph [20].

Next, the processor node is defined within the system. To this end, we assign an LLM to the processor.
While robust models such as GPT-4o are available, we adopt the pre-trained “microsoft/DialoGPT-medium"
model from the Hugging Face API [2] due to certain practical limitations. Accordingly, the processor node
is configured to invoke this LLM with the provided input.
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The next step involves constructing the graph. To begin, we initialize an empty graph in LangGraph,
specifying its input type as state (AgentState). We then add the processor node to the graph, followed by
connecting it to both the start and end states. Finally, we compile the graph and store it in a variable for
subsequent execution.

Lastly, we invoke the compiled graph by passing a conversation to that. The results indicate that simple
bot could successfully meet the intended objective. The complete implementation script is available on
GitHub.

In the second scenario, we extend the simple bot to a chatbot with memory capable of retaining con-
versation history. The LLM and graph architecture remain largely the same as in the previous single-node
bot. The primary modification lies in the AgentState, whose message structure now accommodates both
human-generated and AI-generated messages that enables the system to store and utilize conversational
context.

In the end, we invoke the compiled graph by passing a conversation to that. The results indicate that the
chatbot could successfully achieve the intended objective. The complete implementation script is available
on GitHub.
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Reasoning and Acting (ReAct) Agent

When faced with a complex problem, humans typi-
cally decompose it into a series of smaller, manage-
able steps (reasoning) and take actions by leveraging
both internal knowledge and external information to
solve each step. Similarly, an agent can utilize the
reasoning approach to break down a problem into
multiple sub-problems and then employ appropriate
tools to address each sub-problem effectively. The
corresponding agents are called reasoning and acting
(ReAct) agents [21].

Figure 8.6 illustrates the graph architecture of a
ReAct agent, which consists of a start state, two
nodes (namely agent and tool), and an end state.
The agent node invokes the LLM to perform reason-
ing and determines when to leverage the tool node
to execute the required actions.

Figure 8.6: Graph architecture of a ReAct agent
in LangGraph [20].

In a simplified scenario, the agent utilizes a single tool to calculate the sum of two numbers. Upon
receiving a user query, the agent invokes the tool to perform the computation and return the result.

We first define a shared data structure, called AgentState, to manage and maintain the application’s
state during execution. Within this structure, the messages field is defined as an Annotated type. Sequence
represents an ordered collection of messages, ensuring that the conversational history is preserved chrono-
logically. Each message in the sequence is an instance of BaseMessage, an abstract class that serves as the
foundation for all message types in LangGraph (e.g., HumanMessage, AIMessage, SystemMessage). The
use of Annotated allows us to attach metadata (in this case, the add_messages method) which instructs
LangGraph to append new messages to the existing state rather than replacing them. This design ensures
that the agent can maintain a complete conversation history while updating its state dynamically.

Next, the tool is defined as a function that takes two numbers as input and returns their sum. To
integrate this tool with the LLM, a list of tools is created and passed to the model that enables the LLM to
invoke the appropriate tool when required.

Thereafter, the agent node is defined within the system by assigning an LLM to handle reasoning
and decision-making. While advanced models such as GPT-4o are available, we adopt the pre-trained
“Qwen/Qwen2.5-7B-Instruct" model from the Hugging Face API [2] due to certain practical constraints.
The agent node is then configured to invoke this LLM with the provided input. It is worth noting that, since
the Qwen model does not inherently employ external tools, the system prompt must be carefully crafted to
explicitly instruct the model to use the designated tool. Otherwise, the model may default to its built-in
capabilities, such as performing calculations internally, rather than invoking the external tool as intended.
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As illustrated in Fig. 8.6, a conditional edge connects the agent node to the tool node. After performing
reasoning and decomposing an input query into multiple sub-tasks, the agent evaluates whether the use of
a tool is required to address the next sub-task. If no tool is needed, the agent considers the problem solved
and terminates the response to the query.

The next step involves constructing the graph. We begin by initializing an empty graph in LangGraph,
specifying its input type as state (AgentState). Next, the agent and tool nodes are added to the graph. The
tool node is connected to the agent via a deterministic edge, while the agent node is linked to both the tool
node and the end state through conditional edges. Finally, the graph is compiled and stored in a variable
for subsequent execution.

Lastly, we invoke the compiled graph by providing a conversation as input. The results demonstrate that
the ReAct agent successfully reasons over the query and utilizes the designated tool to respond to the user’s
request. The complete implementation script is available on GitHub.
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In the second scenario, we increase the system’s complexity by incorporating additional tools. The
AgentState, LLM, and overall graph architecture remain largely the same as in the previous single-tool
setup. The primary modification involves the tool set, where two new tools, namely subtract tool and
multiply tool, are added to the system. These tools are responsible for computing the difference and the
product of two numbers, respectively.

In the end, we invoke the compiled graph by providing a conversation that includes three distinct tasks:
summing two numbers, multiplying the result by 6, and subtracting 10 from the result. The detailed execution
steps demonstrate that the ReAct agent successfully decomposes the query into individual sub-tasks, selects
the most appropriate tool for each step, and produces both the intermediate results and the final outcome.
The complete implementation script is available on GitHub.
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Retrieval-Augmented Generation (RAG) Agent

LLMs are trained on a finite dataset and can be-
come outdated over time. Retrieval-augmented gen-
eration (RAG) is an architecture that allows LLMs
to access external information, such as internal orga-
nizational data, scholarly publications, and special-
ized datasets, to enhance their responses and ensure
they remain accurate and up to date [22].

Figure 8.7 illustrates the graph architecture of a
RAG agent, which consists of a start state, two agent
nodes, namely LLM agent and retriever agent, and
an end state. The LLM agent invokes the LLM to
generate responses. The retriever agent, in turn, is
responsible for retrieving relevant information from
designated external resources.

Figure 8.7: Graph architecture of a RAG agent
in LangGraph [20].

In this scenario, the objective is to query the RAG agent about the stock market in 2025. To achieve
this, we first select a relevant PDF document and save it locally. We then define the appropriate loaders
and functions to read the PDF and divide its content into chunks, ensuring compatibility with the LLM’s
token processing limits. Additionally, we introduce overlapping between chunks, which improves the LLM’s
ability to understand the document’s context and maintain coherence across sections.
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The next step is to create a Chroma (ChromaDB) instance, an open-source vector database used to store
and retrieve vector embeddings. ChromaDB serves as an external knowledge base that provides LLMs with
up-to-date information. As a result, it reduces hallucinations and improves the accuracy of retrieval.

Accordingly, a retriever is created from the vector database to extract the most relevant information from
the document. In this setup, the retriever performs a similarity search and returns a specified number of
chunks, in this case, the top five most relevant chunks, which are then passed to the LLM agent as context
for generating accurate responses.

Then, we define a shared data structure, called AgentState, to manage and maintain the application’s
state during execution. Within this structure, the messages field is defined as an Annotated type. Sequence
represents an ordered collection of messages, ensuring that the conversational history is preserved chrono-
logically. Each message in the sequence is an instance of BaseMessage, an abstract class that serves as the
foundation for all message types in LangGraph (e.g., HumanMessage, AIMessage, SystemMessage). The
use of Annotated allows us to attach metadata (in this case, the add_messages method) which instructs
LangGraph to append new messages to the existing state rather than replacing them. This design ensures
that the agent can maintain a complete conversation history while updating its state dynamically.
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The tool is defined as a function that takes the query as input, invokes retriever, and returns the retrieved
information. To integrate this tool with the LLM, a list of tools is created and passed to the model that
enables the LLM to invoke the appropriate tool when required.

As illustrated in Fig. 8.7, a conditional edge connects the two agent nodes. If additional information
is required, the LLM agent queries the retriever agent to obtain relevant data. This decision is made by
checking whether the use of a tool (retriever) is necessary. If no retrieval is needed, the LLM agent considers
the query resolved and terminates its response.

Next, two agent nodes are defined within the system: (i) the LLM agent is assigned a large language
model to handle response generation. While advanced models such as GPT-4o are available, we adopt the
pre-trained “Qwen/Qwen2.5-7B-Instruct" model from the Hugging Face API [2] due to practical constraints.
This agent node is configured to invoke the LLM with the provided input. (ii) the retriever agent is responsible
for invoking tools to retrieve relevant information from external resources.

The next step involves constructing the graph. We begin by initializing an empty graph in LangGraph,
specifying its input type as state (AgentState). Next, the LLM agent and the retriever agent nodes are
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added to the graph. The retriever agent node is connected to the LLM agent node via a deterministic edge,
while the LLM agent node is linked to both the retriever agent node and the end state through conditional
edges. Finally, the graph is compiled and stored in a variable for subsequent execution.

Lastly, we invoke the compiled graph by passing a query about the stock market. The results demonstrate
that the RAG agent successfully retreives the required information using the designated retriever. The
complete implementation script is available on GitHub.
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